Due anni di oscurità: così l’asteroide ha sterminato i dinosauri

Asteroide
L’asteroide caduto sulla Terra 66 milioni di anni fa ha sollevato una coltre di fuliggine che ha causato un periodo di buio durato circa due anni. Crediti immagine: NASA

Prima l’impatto del gigantesco asteroide, poi i terremoti e gli tsunami. Il cielo si riempie di fuliggine e la Terra sprofonda nell’oscurità per due anni: ecco come i dinosauri si sono estinti 66 milioni di anni fa dalla faccia del pianeta.

SCOPERTE – Circa 66 milioni di anni fa un asteroide largo dieci chilometri si è schiantato sulla Terra, nella regione oggi conosciuta

come penisola dello Yucatan. L’impatto del gigantesco asteroide ha causato terremoti, tsunami ed eruzioni vulcaniche, ma soprattutto ha sollevato una coltre di fuliggine nell’atmosfera. I cieli si sono ricoperti di un manto nero e per due lunghi anni il pianeta è stato avvolto dall’oscurità. Le piante hanno smesso di eseguire la fotosintesi, il clima è cambiato e per i dinosauri sopravvissuti agli incendi e all’impatto non c’è stato scampo: tre quarti delle specie viventi sono scomparse durante l’estinzione del Cretaceo-Paleocene.

Questo è lo scenario che spiega come è avvenuta l’estinzione dei dinosauri nello studio pubblicato sulla rivista Proceedings of the National Academy of Sciences e condotto da Charles Bardeen, scienziato del National Center for Atmospheric Research (NCAR), in collaborazione con i ricercatori della NASA e della University of Colorado a Boulder. I ricercatori hanno stimato la quantità di fuliggine prodotta dagli incendi causati dall’impatto dell’asteroide e sono stati in grado, grazie alle simulazioni al computer, di ricostruire cosa è accaduto sia sulla superficie terrestre che nell’atmosfera e quali cambiamenti climatici sono stati in atto.

“L’estinzione di molti grandi animali sulla Terra potrebbe essere stata causata dalle conseguenze immediate del dopo impatto,”, ha spiegato Bardeen, “ma ancora non è chiaro perché si siano estinte anche le specie che vivevano nei grandi oceani e sottoterra, e che dunque avevano una speranza di sopravvivenza. Il nostro studio approfondisce cosa potrebbe essere accaduto dopo gli effetti iniziali, cioè dopo i terremoti, gli tsunami e i cambiamenti climatici. Per questo ci siamo concentrati sulle conseguenze a lungo termine della grande quantità di fuliggine sollevata nell’atmosfera e sui possibili effetti che hanno avuto sugli animali sopravvissuti all’impatto”.

I ricercatori hanno utilizzato le informazioni raccolte dai paleobiologi e dei geologi sulla quantità di fuliggine che era presente nell’atmosfera dopo l’impatto. La caduta dell’asteroide ha prodotto rocce vaporizzate, chiamate sferule, che sono state lanciate nell’atmosfera e sono poi ricadute, prendendo fuoco per la frizione con l’aria e causando incendi di vaste proporzioni su tutto il globo. Proprio questi incendi hanno rilasciato nell’aria grandi quantità di fuliggine, che si è stratificata arrivando fino alla stratosfera e creando una barriera che ha oscurato il cielo.

Per quasi due anni, secondo le stime dei ricercatori, i 15 ooo milioni di tonnellate di fuliggine liberate nel cielo hanno portato il buio, come una lunga e interminabile notte di luna piena, creando un mondo senza fotosintesi nelle piante. Stando alle simulazioni, la fuliggine si è depositata nella stratosfera, la parte più alta dell’atmosfera, ed è stata surriscaldata dal Sole. Dato però che la maggior parte della flora era andata distrutta negli incendi, il blocco della fotosintesi ha avuto un effetto domino sul fitoplancton, gli organismi alla base della catena alimentare negli oceani, che ha portato così alla scomparsa anche di molte specie marine.

La presenza di questa grande quantità di fuliggine ha provocato anche la distruzione dello strato di ozono, che proteggeva la Terra dai raggi ultravioletti dannosi per la vita. Le simulazioni infatti hanno evidenziato come la perdita di luce solare ha portato a diminuzioni di temperatura drastiche sulla superficie terrestre, fino a 28 gradi Celsius in meno sulla Terra, e fino a 11 gradi Celsius in meno negli oceani. E mentre la terraferma si raffreddava, la stratosfera si surriscaldava per il calore imprigionato dalla fuliggine, con la formazione di un deposito di vapore acqueo che ha favorito la distruzione dell’ozono.

Anche se lo scenario descritto nello studio ed elaborato dalle simulazioni al computer appare plausibile, gli scienziati del gruppo di ricerca guidato da Bardeen hanno ammesso che i risultati ottenuti hanno dei limiti. Le simulazioni infatti sono state effettuate con il Whole Atmosphere Community Climate Model (WACCM), che si basa sul moderno clima del pianeta e che non rappresenta dunque il clima di 66 milioni di anni fa, né tiene conto delle posizioni dei continenti, che erano leggermente diverse, e delle concentrazioni di gas, come per esempio del diossido di carbonio i cui livelli erano molto più alti rispetto ad oggi.

Inoltre, la simulazione non tiene conto delle eruzioni vulcaniche e dei solfuri emessi dalla crosta terrestre nel luogo d’impatto col meteorite, che avrebbero implicato un aumento degli aerosol solfati che riflettono la luce nell’atmosfera, come sottolineato da Bardeen: “La collisione di un asteroide è una perturbazione enorme, non è qualcosa facile da teorizzare quando crei un modello per un futuro scenario climatico. Il modello che abbiamo utilizzato non era stato progettato per far fronte a questa situazione e così abbiamo dovuto adattarlo per tenere conto di alcuni degli aspetti dell’impatto, come il riscaldamento della stratosfera di oltre 200 gradi Celsius”.

Le migliorie applicate al modello hanno comunque permesso di creare uno scenario più che plausibile sugli effetti della fuliggine sul pianeta. Ma soprattutto il modello pone le basi anche per altri tipi di studi, come per esempio le simulazioni sugli scenari dei possibili “inverni nucleari”. L’utilizzo di armi nucleari infatti potrebbe iniettare nell’atmosfera grandi quantità di fuliggine, anche se molto minore rispetto a un impatto come quello dell’asteroide, e comporterebbe un raffreddamento globale temporaneo.

I ricercatori infatti hanno testato il loro modello anche nel caso in cui nell’atmosfera fosse stata rilasciata una quantità di fuliggine pari a un terzo di quella causata dall’impatto, quindi di 5000 milioni di tonnellate. Il risultato? La fotosintesi sarebbe stata bloccata per un anno, un tempo sufficiente a indurre cambiamenti climatici significativi e con effetti potenzialmente devastanti, proprio come quelli indotti dall’esplosione di armi nucleari.

@oscillazioni

Pubblicato con licenza Creative Commons Attribuzione-Non opere derivate 2.5 Italia

Fonte: OggiScienza.it

Albert Einstein And Niels Bohr
Scienza
La teoria della misurazione di Bohr

Spesso viene da chiedersi: “Cosa realizza la realtà?” Tratto da: Fisica quantistica per curiosi Esistono diverse risposte alla domanda “Cosa realizza la realtà?” e la prima risposta è contenuta nella teoria della misurazione di Bohr (scuola di Copenhagen), riportata nel testo dello studioso “Atomic theory in the description of nature” (Cambridge, 1934). Ed in essa si afferma che la riduzione della funzione d’onda avvenga a livello dello strumento di misura. Quest’ultima è l’interpretazione della meccanica quantistica maggiormente condivisa fra gli studiosi (nessuna speranza quindi che la coscienza dell’osservatore entri in ballo nel processo di realizzazione della realtà). Bohr volle subito eliminare la figura di un osservatore cosciente, e pensò immediatamente come sostituirlo con diversi artifizi. In pochi anni fu quindi messa a punto la versione definitiva della “interpretazione di Copenaghen”, la quale sostituì ad esso una “reazione termodinamica irreversibile”, affinché quindi lo stato non oggettivo potesse diventare uno stato oggettivo. La cosa fa nascere però alcune perplessità: sembrerebbe infatti impossibile che l’esistenza del mondo microscopico debba dipendere da eventi termodinamici irreversibili, ovvero eventi “macroscopici”. Non dovrebbe essere il contrario? Cioè che il macroscopico dipenda dal microscopico? Per questo ed altri motivi, molti fisici tra cui in primis Wigner (ne abbiamo parlato illustrando …

Diamanti Nettuno
Scienza
Una pioggia di diamanti dal cuore di Nettuno al piccolo laboratorio

Nel cuore dei grandi pianeti ghiacciati, come Urano e Nettuno, le condizioni di alta pressione producono una pioggia di diamanti scintillante. Un nuovo studio ha ricreato in laboratorio le estreme condizioni che si trovano all’interno dei pianeti e ha permesso di osservare il fenomeno in tempo reale. SCOPERTE – Prendere del polistirene, un composto plastico a base di idrogeno e carbonio e mettetelo sotto pressione, usando un potente strumento che crea violente onde d’urto e un potente laser ottico a raggi X. In questo modo sarete in grado di osservare la formazione di nanodiamanti, una reazione chimica che avviene anche all’interno dei grandi pianeti ghiacciati, per esempio Urano e Nettuno nel nostro Sistema Solare, e che provoca delle piogge scintillanti fino a creare un sottile strato di diamanti intorno al nucleo. A ricreare in laboratorio la formazione dei diamanti e a fotografarla – anche se il processo dura appena una manciata di femtosecondi, cioè un milionesimo di miliardesimo di secondo – sono stati i ricercatori guidati da Dominik Kraus, della Helmholtz Zentrum Dresden-Rossendorf, nello SLAC National Accelerator Laboratory. Il risultato ottenuto dagli scienziati è stato pubblicato sulla rivista Nature Astronomy e rappresenta un grande traguardo non solo per l’astronomia, dato che ci racconta qualcosa in più sugli esopianeti e …

ScienzaI libri del blogPassione scritturaCollabora con noi